If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-16x-1=0
a = 7; b = -16; c = -1;
Δ = b2-4ac
Δ = -162-4·7·(-1)
Δ = 284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{284}=\sqrt{4*71}=\sqrt{4}*\sqrt{71}=2\sqrt{71}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{71}}{2*7}=\frac{16-2\sqrt{71}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{71}}{2*7}=\frac{16+2\sqrt{71}}{14} $
| 8x-(2x-3)=2(x+3,5) | | 5x-(8x+6)=12 | | 12=13+5n+-5n | | 2x−5+3x−8+10x−17=180 | | 2x+3=4x-6+× | | -x^2+11x-13=0 | | C=650y+300y | | (7r+5)(2r−6)=0 | | 3.98=x-11.24 | | 4x^2+8x-14=0 | | 41=4x−7 | | 5*x+8=-2*x+5 | | -6=x-2-10 | | 17-11=h-1 | | 2x+20+3x+15+135=180 | | 8z-9=-1 | | 5x–12=2x+12 | | 110-24x=20-4 | | 5x+7x+120=180 | | 135°n=180°n-360° | | 5/2(12k+27)=-57-9k | | 3h-11=h-1 | | x+73+134=180 | | 2.50+0.5m=1+0.75m | | 6x-2+4x=66-5x | | 1+2y=23 | | 20+3c=2 | | 5y^2+212y+22=0 | | 9a+27=9 | | –6t+9=–5t | | 10+7x-6x=3 | | 3x^2+8=68 |